Ultimate SQL Cheat Sheet

SQL KEYWORDS

KEYWORDS DESCRIPTION

Adds a new column to an existing table.

Example: Adds a new column named
ADD email_address’ to a table named 'usersl.

ALTER TABLE users
ADD email address varchar(255);

SQL KEYWORDS

KEYWORDS DESCRIPTION

Deletes a column from a table.

Example: Femoves the ﬁrst_name column
DROP from the users table.

COLUMN ALTER TABLE users
DROP COLUMN first_name

It creates a new constraint on an existing
table, which is used to specify rules for any
data in the table.

Example: Adds a new PRIMARY KEY

ADD constraint named 'user' on columns
CONSTRAINT ID and SURNAME.
ALTER TABLE users

ADD CONSTRAINT user PRIMARY KEY
(ID, SURNAME);

Deletes the entire database.

DROP Example: Deletes a database named
DATABASE ‘websitesetup.
DROP DATABASE websitesetup;

Adds, deletes or edits columns in a table.
It can also be used to add and delete
constraints in a table, as per the above.

Example: Adds a new boolean column
called approved to a table named 'deals|

ALTER TABLE ALTER TABLE deals
ADD approved boolean;

Example 2; Deletes the approved column
from the 'deals’ table.

ALTER TABLE deals
DROP COLUMN approved:

Removes a default value for a column,

Example 1(MySQL): Removes the default
value from the name column in the

DROP ‘products’ table.
DEFAULT
ALTER TABLE products
ALTER COLUMN name DRCP DEFAULT;
Deletes a table from a database.
'II':LRB?_FE Example: Removes the users table.

DROP TABLE users;

Checks for the existence of any record
within the subquery, returning true if one or
more records are returned,

Example: Lists any dealerships with a deal

Mandar Patil

Changes the data type of a table's column.

finance percentage less than 10.

Example In the 'users' table, make the EXISTS e (arhi
ALTER column ‘incept_date' into a 'datetime’ type, =GLET dealcabip_pams
FROM dealerships
COLUMN ALTER TABLE users P
WHERE EXISTS (SELECT deal_name
ALTER COLUMMN incept_date datetime; FROM deals WHERE dealership_id =
deals.dealership_id AND finance_
Returns true if all of the subquery values percentage < 10);
meet the passed condition,
Example: Returns the users with a higher Specifies which table to select or delete data
number of tasks than the user with the from
ALL EE;:;;;?T{?{?TET Hp e Example:Selects data from the users table.
SELECT first_name, surname, tasks_no FROM SELECT area_manager
FROM users FROM area_managers
WHERE tasks_no > ALL (SELECT tasks WHERE EXISTS (SELECT ProductMame
FROM user WHERE department_id = 2); FROM Products WHERE area_manager_id
= deals.area_manager_id AND Price = 20),
Used to join separate conditions within a
WHERE clause. Used alongside a WHERE cause as a
Example:Returns events located in shorthand for myliple OR conditions.
; i Soinstead of
Londen, United Kingdom.
AND SELECT * FROM users
SELECT * FROM events
WHERE country = 'USA' OR country =
WHERE host_country='United Kingdom' IN 'United Kingdom' OR
AND host_city="London’, country = 'Russia’' OR country = 'Australia’;
You can use:-
Returns true if any of the subquery values SELECT * EROM users
meeat the given condition.
WHERE country IM (USA', "United
Example:Returns products from the Kingdom', 'Russia’, 'Australia’);
products table which have received
orders — stored in the orders table -
with a guantity of more than 5. Add new rows to a table.
ANY
SELECT name Example: Adds a new vehicle.
INSERT INTO
FROM products INSERT INTO cars (make, madel,
mileage, year) VALUES (‘Audi', 'A3',
WHERE productld = ANY (SELECT 30000, 2016);
productld FROM orders WHERE Qty =
Tests for empty (NULL) values.
Renames a tabte or CDlerﬂ with an al IElS Example: Returns Users that hav&ﬂ't given
value which only exists for the duration of a contact number.
the query, IS NULL
SELECT * FROM users
Example Aliases north_east_user_
subscrjpﬁons column. WHERE contactmnumher IS MULL:
AS SELECT north_east_user_subscriptions
AS ne_subs T f NULL Tests for values that
IS NOT NULL a:}eilrte;f”rs;a ?NUL;I-L Tests for values tha
FROM users Py '
WHERE ne_subs > 5; Returns true if the operand value matches a
pattern
Used with ORDER BY to return the data in Example: Returns true if ?he user's
S ascending order LIKE first_name ends with 'son
A .
Example:Apples, Bananas, Peaches, SELECT * FROM users
Raddish. WHERE first_name LIKE '%son"
lect I ithin the gi ;
Seiectrvalues Wil hesivenmnge Retums true if a record DOESN'T meet the
Example 1:5Selects stock with a quantity condition,
between 100 and 150. : :
Example: Returns true if the user's
SELECT * FROM stock NOT first_name doesn't end with 'son’
WHERE quantity BETWEEN 100 AND 150; SELECT * FROM users
WHERE first_name NOT LIKE 'son';
TW Example 2;5elects stock with a quantity
BE EEN MNOT between 100 and 150, Alternatively,
using the NOT keyword here reverses the Used alongside WHERE to include data
logic and selects values outside the given when either condition is true.
ol Example: Returns users that live in either
SELECT * FROM stock OR Sheffield or Manchester.
WHERE quantity NOT BETWEEN 100 SELECT * FROM users
AND 150 WHERE city = 'Sheffield’ OR '‘Manchester’;
C“E’“_Se query output depending on Used to sort the result data in ascending
conditions. (default) or descending order through the
Example 1:Returns users and their use of ASC or DESC keywords
subscriptions, along with a new column Example: Returns countries in alphabetical
called activity_levels that makes a ORDER BY order e F
judgement based on the number of -
subscriptions. SELECT * FROM countries
SELECT first_name, surname, ORDER BY name;,
subscriptions
CASE

CASE WHEN subscriptions = 10 THEN
“Yery active’

Retums resulis where the row number
meets the passed condition.

Mandar

Patil

WHEN Quantity BETWEEN 3 AND 10
THEMN 'Active’

ELSE 'Inactive’
END AS activity levels

FROM users;

ROWNUM

Example : Returns the top 10 countries
from the countries table

SELECT * FROM countries
WHERE ROWNUM C=10;

CHECK

Adds a constraint that limits the value which
can be added to a column

Example 1(MySQL): Makes sure any users
added to the users table are 18 or over

CREATE TABLE users
first_name varchar{255),
age int,

CHECK (age=18)

I

Example 2(MySQL): Adds a check after
the table has already been created

ALTER TABLE users

ALTER TABLE users

SELECT

Used to select data from a database, which
is then returned in a resulis set,

Example : Selects all columns from all
users.

SELECT * FROM users;

Example 2: Selects the first_name and
surname columns from all users. XX

SELECT first_name, surname FROM users;

SELECT
DISTINCT

Sames as SELECT, except duplicate values
are excluded,

Example : Creates a backup table using
data from the users table,

SELECT * INTQO usersBackup2020

FROM users;

CREATE
DATABASE

Creates a new database,

Example 1(MySQL): Creates a new
database named websiteset.

CREATE DATABASE websitesetup;

CREATE
TABLE

Creates a new table.

Example: Creates a new table called
'users' in the websitesetup database.

CREATE TABLE users
id int,

first_name varchar(255),
surname varchar(25%),
address varchar(255),

contact number int

Y;

SELECT INTO

Copies data from one table and inserts it
into another.

Example: Returns all countries from the
users table. removing any duplicate values
iwhich would be highly likely).

SELECT DISTINCT country from users;

SELECT TOP

Allows you to return a set number of
records to retum from a table,

Example: Returns the top 3 cars from the
cars table.

SELECT TCP 3 * FRCOM cars;

DEFAULT

Sets a default value for a column;

Example 1(MySQL): Creates a new table
called Products which has a name column
with a default value of 'Placeholder Name'
and an available_from column with a
default value of today's date.

CREATE TABLE products

id int,

name varchar(255) DEFAULT 'Placehalder
Name',

available from date DEFAULT GETDATE()
)}

Example 2(MySQL): The same as above,
but editing an existing table.

ALTER TABLE products

ALTER name SET DEFAULT 'Placeholder
Mame'

ALTER available_from SET DEFALULT
GETDATE():

SET

Used alongside UPDATE to update existing
data in a table.

Example: Updates the value and quantity
values for an order with an id of 642 in the
orders table.

UFPDATE orders
SET value = 19.49, quantity = 2
WHERE id = 842;

SOME

ldentical to ANY

TOP

Uzed alongside SELECT to retum a set
number of records from a table,

Example: Returns the top 5 users from the
users table

SELECT TOP &5 * FROM users;

TRUNCATE
TABLE

Similar to DROP, but instead of deleting the
table and its data, this deletes anly the data.

Example: Empties the sessions table, but
leaves the table itsalf intact

TRUNCATE TABLE sessions;

DELETE

Delete data from a table
Example: Removes a user with a user_id
of 674.

DELETE FROM users WHERE user_id =
G674

DESC

Used with ORDER BY to retum the data in
descending order

Example: Raddish, Peaches. Bananas,
Apples.

UNION

Combines the results from 2 or more
SELECT statements and returns only
distinct values.

Example: Returns the cities from the events
and subscribers tables.

SELECT city FROM events
UNION
SELECT city from subscribers;

UNION ALL

The same as UNION but includes duplicate
values,

This constraint ensures all values in a
column are unique

Example 1 (MySQL): Adds a unigue
caonstraint to the id column when creating a
new users table,

CREATE TABLE users
id int NOT NULL.

Mandar

Patil

UNIQUE name varchar(255) NOT NULL,
UNIQUE (id)
)i

Example 2 (MySQL). Alters an existing
column to add a UNIQUE constraint.

ALTER TABLE users
ADD UNIQUE (id);

Updates existing data in a table.

Example: Updates the mileage and service
Due values for a vehicle with an

UPDATE UPDATE cars

SET mileage = 23500, serviceDue = 8
WHERE id = 45;

Used alongside the INSERT INTO keyword
to add new values to a tahle.

Example: Adds a new car to the cars table.
VALUES SET mileage = 23500, serviceDue = 8
INSERT INTO cars (name, model, year)

WALUES ('Ford', 'Fiesta’, 2010);

Filters results to only include data which
meets the given condition.

Example: Returns orders with a quantity

WHERE of mere than 1 item.
SELECT * FROM orders
WHERE quantity = 1,

COMMENTS
SINGLE LINE COMMENTS MULTILINE COMMENTS
Single line comments start with - Any text after these 2 characters to Multiline comments start with /* and end with */. They stretch across
the end of the line will be ignored multiple lines until the closing characters have been found.
-- My Select query *
SELECT * FROM users; This is my select query.

It grabs all rows of data from the users table
SELECT * FROM users;

This is another select query, which | don't
want to execute yet

SELECT * FROM tasks;
*

MySQL Data Types

CREATE TABLE users (

id int,

first_name varchar(255)

b
STRING DATA TYPES NUMERIC DATA TYPES
DATA TYPE DESCRIPTION DATA TYPE DESCRIPTION
Fixed length string which can centain A bit-value type with a default of 1, The
letters, numbers and special characters, BIT(SIZE) allowed number of bits in a value is set via
CHAR(SIZE) The size parameter sets the maximum the size parameter, which can hold values

mdrimem lmm bl Femima FEE aaiibl A Fmads Frmemm A bl A

Mandar Patil

DU ISTIGUL, 1IN W = 200 Wil a uciduliL

of 1.

(NN N B U S B O

Variable length string similar to CHARQ,

A very small integer with a signed range of
-128 to 127, and an unsigned range of 0 to

'838:59:59.

VARCHAR(S‘ZE’ bLIt with a ma){imum S‘Hr‘g Eength range TINYFNT(SIZE} 255, He]'el the size parameter Specmes the
from 0 to 65335, maximum allowed display width, which
is 255.
Similar to CHARQ but stores binary byte
BINARY(SIZE) strings. BOOLEAN Same as BOOL
Similar to CHARQ but stores binary byte A small integer with a signed range of
VARCHAR(SIZE) strings. -32768 to 32767, and an unsigned range
SMALLINT(size) from 0 to 65535, Here, the size parameter
TINYBLOB | HoUBnay Lase Obcts (6L088 win
a maxlength of 255 bytes, : i
Holds a string with a maximum length of A medium integer with a signed angs of
TINYTEXT 255 characters. Use VARCHAR() instead, . -8388608 to 8388607 and an unsigned
as it's fetched much faster. MEDIUMINT(size) range from O to 16777215, Here, the size
parameter specifies the maximum allowed
display width, which is 255.
Holds a string with @ maximum lenath of
TEKT{SEZ&) 55535 bytes. Again, better to use
YARCHARD A medium integer with a signed range of
-21474B3648 to 2147483647 and an
: : _ INT(size) unsigned range from 0 fo 4294967295,
BLOB(size) Holds Binary Large Objects (BLOBS) with Here, the size parameter specifies the
a max length of 65535 bytes. maximum allowed display width, which is
255
Holds Binary Large Objects (BLOBs) with
MEDIUMBLOB a max Iengtﬁ of 1%3 T-"T?1215 E:ng.rtes } .
it INTEGER(size) Same as INT.
Holds a string with a maximum length of
LONGTEXT 4,294 987,295 characters. A medium integer with a signed range of
-92233720368547 75808 to
_ _ . 92233720368547758B07, and an unsigned
LONGELOB Holds Binary Large Objects (BLOBS) with BIGINT(size) range from 0 to18446744073709551615.
a max length of 4,294 967,295 bytes Here, the size parameter specifies the
maximum allowed display width, which
A string object that only has aone value, B 20,
which is chosen from a list of values which
Vel 0l e Akl Tt Aty TS el 1N
i i b 4
ENUM{H, b, c, this list, it's replaced with a blank value preEcision (p) parameter is between O t0_2 k
etc...) instead. Think of ENUM being similar to FLOAT(p) tenEdesryps s sett s LA G, st
HTML ; dio b in thi 9 d P its from 25 to 53 the data type is set to
Pl Daxas:in Ahis-regee: DOUBLE(). This behaviour is to make the
CREATE TABLE tshirts (color ENUM 'red’, storage of values more efficient.
‘green’, 'blue’, 'yellow', ‘purple'});
A floating point number value where the total
A string object that can have 0 or mare s digits are set by the size parameter, and the
values, which is chosen from a list of DOUBLE(size, d) number of digits after the decimal point is
SET values which you define, up to a set by the d parameter
{a b.c etc...} maximum of 84 values. Think of SET
T being similar to HTML checkboxes
in this regard An exact fixed point number where the
total number of digits is set by the size
parametars, and the total number of digits
) after the decimal point is set by the d
DECIMAL(size, d) parameter.
DATE/TIME DATA TYPES For size, the maximum number is 65 and
the default is 10, whilst ford, the maximum
DATA TYPE DESCRIPTION number is 30 and the default is 10
A simple date in YYYY-MM-DD format, with |
DATE a supported range from "1000-01-01' to DEC‘-SZE’ d) Samu s DECIMAL
'9999-12-31.
A date time in YYYY-MM-DD hh:mmess
format, with a supported range frem
1000-01-01 00:00:00 to '9999-12-31
DATETIME(fsp) 23:59:39" —
By adding DEFAULT and ON UPDATE to
the column definition, it automatically sets
to the current date/time.
A Unix Timestamp, which is a value
relative to the number of seconds since
the Unix epoch {1970-01-01 00:00:00'
UTC). This has a supported range from
'"1970-01-01 00:00:01 UTC to 2038-01-09
TIMESTAMP(fsp) | 0%14:07°UTC
By adding DEFAULT
CURRENT_TIMESTAMP and ON
UPDATE CURRENT TIMESTAMP to the
column definition, it automatically sets to
current date/time.
A time in hh:mmess format, with a
TIME(fsp) supported range from '838:59:59 to

Mandar Patil

YEAR

A year, with a supported range of "1901" to

'2155.

OPERATORS

ARITHMETIC OPERATORS BITWISE OPERATORS

OPERATOR DESCRIPTION OPERATOR DESCRIPTION
+ Add & Bitwise AND
- Subtract | Bitwise OR
e Multiply A Bitwise exclusive OR
/ Divide
% Modulo COMPOUND OPERATORS
OPERATOR DESCRIPTION
COMPARISON OPERATORS += Add equals
OPERATOR DESCRIPTION = Subtract equals
= Equal to R Multiply equals
> Greater than I= Divide equals
< Less than o= Module equals
= Greater than or equal to &= Bitwise AND equals
<= Less than or equal to A= Bitwise exclusive equals
= Mot equal to | Bitwise OR equals
FUNCTIONS
STRING FUNCTIONS NUMERIC FUNCTIONS
DATA TYPE DESCRIPTION DATA TYPE DESCRIPTION
Retums the equivalent ASCI| value for a Returns the absolute value of the given
ASCIIA specific character, ABS number.
CHAR_LENGTH Retums the character length of a string, ACOS Retums the:arc cosine of the given number,
CHARACTER
S CHAR_LENGTH.
LENGTH ame as = ASIN Returns the arc sine of the given number,
CONCAT Adds expressions together, with 2 minimum B ¥ _
of 2. ATAN eturns the arc tangent of one or 2 given
numbers
Add i together, but with
CONCAT_WS sep:rg:;irz:;o::n eg?;h i;m:, S ATAN2 Return the arc tangent of 2 given numbers,
Retums an index value relative to the A, Returns the average value of the given

Mandar Patil

MV 3

exXpression.

Returns the closest whole number (integer)

FIELD position of a value within a list of values,
When passed a number, retums that number
FORMAT formatted to include commas (eg 3,400,000).
Allows you to insert one string into another
Y g
INSERT at a certain point, for a certain number of
characters.
Retums the position of the first time one
INSTR string appears within another.
LCASE Convert a string to lowercase,
Starting fram the left, extract the given
LEFT number of characters from a string and
return them as another.
LENGTH Retums the length of a string, but in bytes.
LOCATE Retums the first occurrence of ane string
within another,
LOWER Same as LCASE
LPAD Left pads one string with another, to a
specific length.
Remove any leading spaces from the given
LTRIM
string.
MID Extracts one string from another, starting
from any position.
POSiTIOM Returns the pﬂﬂiﬂﬂlﬂ of the first time one
substring appears within another,
REPEAT Allows you to repeat a string.
Allows you to replace any instances of a
REPLACE substring within a string, with a new
substring.
REVERSE Reverses the string.
Starting from the right, exiract the given
RIGHT number of characters from a string and
return them as another.
Right pads one string with another, to a
RPAD specific length,
Remaves any trailing spaces from the given
RTRIM string.
Returns a string full of spaces equal to the
SPACE amount you pass it,
ompares 2 strings for differences.
STRCMP G 2 strings for diff
Extracts one substring from another, starting
SUBSTR from any position.
SUBSTRING Same as SUBSTR
SUBSTRING Returns a substring from a string before the
— passed substring is found the number of
INDEX times equals to the passed number,
Removes trailing and leading spaces from
TRIM the given string Same as if you were to run
LTRIM and RTRIM together.
UCASE Convert a string 1o uppercase.

CEIL upwards from a given decimal point number,
CEILING Same as CEIL
Ccos Returns the cosine of a given number.
COoT Retums the cotangent of a given number,
Returns the amount of records that are
COUNT returned by a SELECT query.
onverts a radians value to degrees.
DEGREES C rt di lue to d
ows you to divide integers.
DIV All to divide int
EXP Returns to the power of the given number.
Returns the closast whole number (integer)
FLOOR downwards from a given decimal point
number.
Returns the highest value in a list of
GREATEST arguments,
Returns the smallest value in a list of
LEAST arguments,
LN Retums the natural logarithm of the given
number.
Returns the natural logarithm of the given
LOG number, or the logarithm of the given number
to the given base.
LOG10 Does the same as LOG, but to base 10
LOG2 Does the same as LOG, but to base 2,
MAX Returns the highest value from a set of
values,
MIN Returns the lowest value from a set
of values,
MOD Returns the remainder of the given number
divided by the other given number,
Pl Returns Pl
POW Returns the value of the given number
raised to the power of the other given
number.
POWER Same as POW,
RADIANS Converts a degrees value to radians.
RAND Returns a random number.
SIGN Returns the sign of the given number
SIN Returns the sine of the given number
SQRT Returns the sguare root of the given
number.
SUM Returns the value of the given set of values
combined.
TAN Returns the tangent of the given number

Mandar Patil

UPPER

NUMERIC FUNCTIONS

Same as UCASE.

DATA TYPE DESCRIPTION
Add a date interval (eg 10 DAY) to a date
ADDDATE (2g 20/01/20) and return the result (eg:
20/01/30).
Add a time interval (eg: 02:00) to a time or
ADDTIME datetime (05:00) and return the result
(07:00).
CURDATE Get the current date.

CURRENT_DATE

Same as CURDATE.

CURRENT_ Get the current date and time.
TIMESTAMP
CURTIME Same as CURRENT_TIME.
DATE Extracts the date from a datetime
expression.
DATEDIFF Returns the number of days between the 2
given dates.
DATE_ADD Same as ADDDATE.

DATE_FORMAT

Formats the date to the given pattern.

Subtract a date interval (eg: 10 DAY) to a

DATE_SUB date (eg 20/01/20) and return the result (eg:
20/01/10).
DAY Returns the day for the given date.
DAYNAME Returns the weekday name for the given
date.
Returns the index for the weekday for the
DAYOFWEEK given date.
Returns the day of the year for the given
DAYOFYEAR i
Extract from the date the given part (eg
EXTRACT MONTH for 20/01/20=01).
FROM DAYS Return the date from the given numeric date
value, HOUR.
HOUR Return the hour from the given date.
LAST DAY Get the last day of the manth for the given
date.
LOCALTIME Gets the current local date and time.
LOCALTIMESTAMP Same as LOCALTIME.
Creates a date and returns it, based on the
MAKEDATE given year and number of days values.
Returns the microsecond of a given time ar
MICROSECOND | ;54
MINUTE Returns the minute of the given time or

datetime.

TRUNCATE

Returns number truncated to the given
number of decimal places,

NUMERIC FUNCTIONS

DATA TYPE DESCRIPTION
IN Returns the given number in binary.
BINARY Returns the given value as a binary string
CAST Convert one type into another.
COALESCE From a list of values, return the first non-null

value.

CONNECTION_ID

For the current coennection, return the
unigue connection 1D,

Convert the given number from one numeric

CONV |
base system into another,
CONVERT Convert the given value into the given

datatype or character set.

CURRENT_USER

Return the user and hosthame which was
used to authenticate with the server.

DATABASE Get the name of the current database.
Used alongside aggregate functions
(COUNT, MAX, MIN, SUM, AVG) to group
the results.
Example: Lists the number of users with

GROUP BY active orders.
SELECT COUNT{user_id), active_ocrders
FROM users
GROUP BY active_orders;
It's used in the place of WHERE with
aggregate functions,
Example: Lists the number of users with
active orders, but only include users with

HAVING more than 3 active orders.
SELECT COUNT{user_id), active_orders
FROM users
GROUP BY active_orders
HAVING COUNT(user_id) = 3;
If the condition is true return a value,
IF otherwise return another value.
IENULL If the expression is null, return 1 otherwise

return O,

LAST INSERT_ID

For the last row which was added or
updated in a table, return the auto
increment.

NULLIF

Compares the 2 given expressions. If they
are equal, NULL is returnad, otherwise the
first expression is returned.

SESSION_USER

Return the current user and hostnames.

SYSTEM_USER

Same as SESSION_USER.

VERSION

Returns the current version of the MySQL
powering the database.

Mandar Patil

MONTH

Returns the menth of the given date.

WILDCARDS

Returns the name of the month of the given
MONTHNAME | Reu . NAME DESCRIPTION
Equates to zero or more characters,
NOW Same as LOCALTIME. _ _
Example 1: Find all users with surnames
ending in 'son’.
PERIOD ADD Adds the given number of months to the SELECT * FROM users
= given period.
% VWHERE surname LIKE "xson',
PERIOD DIFF Returns the difference between 2 given Example 2: Find all users with surnames
- periods ending in 'son’,
SELECT * FROM users
QUARTER Returns the year quarter for the given date, WHERE city LIKE “Yhche%"
Returns the second of a given time or
SECOND datetime. Equates to any single character.
Example 1: Find all users living in cities
SEC_TO_TIME Returns a time based on the given seconds.) 't:.‘iilgtg:g With:any: S charactars, followsdby
SELECT * FROM users
Creates a date and returns it based on the ; . ;
STR_TO_DATE given string and format. WHERE city LIKE '_chester
SUBDATE Same as DATE_SUB. . . .
Equates to any single character in the list.
Example 1: Find all users with first names
Subtracts a time interval (eg: 02:00) to a b;ginnﬁng withl.J H O:M e Wi
SUBTIME time or datetime (05:00) and return the i '
result (03:00), SELECT * FROM users
WHERE first_name LIKE "(jhm]=",
SYSDATE Same as LOCALTIME.
Example 2: Find all users with first names
. . (CHADIST) beginning letters between A-L.
TIME Returns the time from a given time or
datetime. SELECT * FROM users
WHERE first_name LIKE '[a-1]>",
TIME_FORMAT Returns the given time in the given format. . o
- Example 3. Find all users with first names
not ending with letters between n-s.
TIME_TO_SEC Converts and returns a time into seconds. SELECT * FROM users
WHERE first_name LIKE "%[!In-s]);
TIMEDIFE Returns the difference between 2 given
time/datetime expressions.
TIMESTAMP Returns the datetime value of the given
date or datetime,
Returns the total number of days that have
TO-DAYS passed from '00-00- 0000’ to the given date,
WEEK Returns the week number for the given date.
Returns the weekday number for the given
WEEKDAY date.
WEEKOFYEAR Returns the week number for the given date.
YEAR Returns the year from the given date,
YEARWEEK Returns the year and week number for the

given date,

KEYS

FOREIGN KEY

EXAMPLE 1 (MYSQL)

CREATE TABLE orders (

Mandar Patil

id Candidate Key int

_ o o
last_name varchar

id int
address varchar

user_id {Foreign Key) int
email varchar

product_id (Foreign Key) int

agent_logged tinyint

Child Table

EXAMPLE 1 (MYSQL)

CREATE TABLE users |

id int NOT NULL AUTC_INCREMENT,

first_name varchar(255).

Parent Table

PRODUCTS

id Candidate Key int
name varchar
description text
stock_count int
price float

Parent Table

id int MOT NULL,
user_id int,
product_id int,
PRIMARY KEY (id),

FOREIGN KEY (user_id) REFERENCES users(id),

FOREIGN KEY (product_id) REFERENCES productsiid)

| ;

EXAMPLE 2 (MYSQL)

ALTER TABLE orders

PRIMARY KEY

EXAMPLE 2 (MYSQL)

ALTER TABLE users

last_name varchar(255) NOT NULL,

address varchar{255).
email varchar{255).
PRIMARY KEY (id)

)

ADD PRIMARY KEY (first_name};

ADD FOREIGN KEY (user_id) REFERENCES users(id);

WILDCARDS

DATA TYPE DESCRIPTION
Creates an index named ‘idx_test on the
first_name and surname columns of the
users table. In this instance, duplicate

CREATE values are allowed.
INDEX
CREATE INDEX idx_test
OMN users (first_name, surname};
Creates an index named "idx_test' on the
first name and surname columns of the
CREATE Ezﬁjrsstaa?zlfalllr; :1;3 -mstance. duplicate
UNIQUE
INDEX CREATE UNIQUE INDEX idx_test
ON users (first_name, surname};

CREATING VIEWS

CREATE VIEW priority_users AS
SELECT * FROM users
WHERE country = United Kingdom;,

SELECT * FROM [priority_users);

REPLACING VIEWS

CREATE OR REPLACE VIEW [priority_users] AS
SELECT * FROM users

WHERE country = ‘United Kingdom' OR country="USA',

VIEWS

Mandar Patil

Creates an index named "idx_test' on the
first name and surname columns of the

DROP users table. In this instance, duplicate
INDEX values are allowed.
ALTER TABLE users DELETING VIEWS

BROP INDEX I test, DROP VIEW priority_users;

JOINS ORDERS

INNER JOIN LEFT JOIN id | first_name| Last_name address email
1 Lube Harison 1640, Kjetl Homme __. Lube@153....
Table 1 Table 2 Table 2 2 Healer Reynolds 742, Norway, Denmark. heali32@hot......
3 Simpson Cheksan 7, Nova Scofia..... SimpsonTBE....
4 Chekson Simpsan 15, Santo Domingo. ChecksonBO@E.. ..
RIGHT JO!M OUTER JO!N 5 Oliver Harison 1640, San Salvador. oliverS715@@....
] jones Gabet 598, Caracas, 1010 .. jonesb4T@....
T Micheal Jehnsen 12, Western Michigan.. Micheald017@....
e 8 Thomes Srmith 342, Mary Jones Station | smith0S98@ ...
4 Robyn Gabet 598, Monte, Trigo, robynG5478@....
10 Byony Brown 165, First Ave. Usa., byonyB754@....
ORDERS PROUDCTS
id user_id product_id agent_logged id name description stock_count price
1 5 196 i) 102 Cartono.. Wy i] 14,99
] 4 a2 i 23 Cardbor.. Dec 1 3.49
3 G 310 i] 3 Smart.. MULL 1 24.99
4 10 196 1 a2 Troast 33, Die 4 09,50
5 1 BT 1 275 Ad. berta B 499
B 1 341 1 436 Pack of 50. you 5 1299
7 1 875 0 341 Setof 25. Maodo 2 4.99
8 £l 3 1 &7 Large Car.. Pack 10 12.99
& i 23 1 196 10, KP. Hay que 10 1599
10 8 196 1 310 Setof 35 .. Cetta 10 2.99

PROU DCTS SELECT orders.id. users first_name. users.surname, praducts.name as

‘product name

id name description | stock_count price FROM orders
102 Carona.. Why 0 14,99 INMER JOIN users on orders.user_id = users.id
s TR s 1 349 INNER JOIN products en orders.product_id = products.id;
3 Smar., NULL 1 74 949
32 Troast 33, Die 4 09.50 INNER JOIN RES LT SET
275 Ak perta ? 15 id | first_name surname | product name
436 Pack of 50. you 5 12.99 1 Oliver Harison 10 X Plastic.....
341 Setof 25.. Mada 2 4.99 2 Claire Simpson TripLast 33
67 Large Car. Pack 10 1299 3 Jamas Gilber StorePac §.
196 10, XP. Hay qua 10 15.99 4 Bryony Brawn 10 X Plasti....
310 Setof 35 .. Cetta 10 2.99 5 Luke Harison Large Care....
] Luke Harison Setof2 8.
T Luke Harison Ad Storage...
8 Robyn Gilbert SmartMo. .
g Oliver Harrison Cardboar...
10 Thomas Smith 10 X Plasti...

Mandar Patil

What is a Database?

Before we get started with SQL Cheat Sheet, we need to understand what is a database and why do we need SQL. If you want to learn this offline, you can download the SQL basics
cheat sheet any time.

What is a

Database
Management

Data is a collection of facts related to any object. For example: - Your name, number, birthday, phone number, email address, etc. is a collection of facts about you.

Therefore, a database is a systematic collection of small units of information (data). For example: - An organized list of all the students of a school along with their data (Name, Phone
Number, Birthday, etc.) is referred to as a database.

What is an RDBMS(Relational Database Management System)?

RDBMS Stands for Relational DataBase Management System and is a collection of tools that allow users to organize, manipulate, and visualize databases. RDMBS follows some
standards that allow for the fastest response from a database and make it easier for humans to interact with a database.

Think of an RDBMS as a tool that allows you to play with your data and generate insights or value from the database.

What is SQL(Structured Query Language)?

Now that you understand what a database is and what a DBMS is, let's understand what SQL is.

To recap, a database is a collection of data and an RDBMS is a tool that allows you to interact with your data. Therefore, you would need a "language" to communicate with the database
that humans and computers can understand, and that language is known as SQL.

What is SQL

(Structured Query Language)

SQL stands for Structured Query Language. As the name suggests, it is a structured language via which you can query the database for performing various tasks such as Storing,
Manipulating, and retrieving data from a database.

SQL is the standard language when it comes to communicating with powerful relational databases such as Oracle, Sybase, Microsoft SQL Server, Access, Ingres, etc. Anything related to
data in relational databases such as creating tables, limiting access to data, sorting, filtering, grouping, etc. is achieved using SQL.

In this SQL cheatsheet, we will be learning everything there is to learn about SQL.

Mandar Patil

SQL v/s MySQL: Difference Between Both

Most beginners usually get confused between the two terms - SQL and MySQL, and sometimes use the two interchangeably. However, there is a clear and vast difference between the
two.

As defined earlier, SQL is a language that allows one to communicate with the database. MySQL on the other hand is an RDBMS in which you can type SQL commands to interact with
the database.

SQL is the language/protocol that is used by relational database management systems to allow users to manipulate data in the database.

MySQL is a database management system that provides users with an interface to connect with databases. MySQL provides users with the ability to create various databases, tables,
stored procedures, functions in their database servers. SQL is the language that is used to perform powerful operations on the database.

In this SQL Cheat Sheet, we would be looking at both SQL and MySQL which would help clarify the difference.

What Can SQL do?

SQL is a powerful programming language that allows you to communicate with the database. Almost all companies use databases to store and retrieve data in some form or the other.
Using SQL, you create Databases, and inside a database, you create various TABLES in which you can add all your data. Using SQL, you can:

. Create / Delete Databases

. Create / Delete Table(s) in a database

. SELECT particular data from table(s)
. INSERT data into tables

. UPDATE data in tables

. DELETE data from tables

. Create Views in the database

. Execute various aggregate functions

e BN e R I S S N

and tons of other cool stuff. So, let's see how we can harness this power.

How to get started with SQL?

To get started with writing SQL on your computer, you would need to install a Database Management Server. The RDBMS would then give you all the necessary tools to interact with
your database.

There are various RDBMS that you can use, and it doesn't matter (much) what system you choose as long as it's working for you. Some of the most common RDBMS are:
1. MySQL
2. Oracle
3. Microsoft SQL Server

4. PostgreSQL
5. Heidi SQL

Just install any of the RDBMS that you like from their official website and you should be able to create a database server by simply following their instructions. Once you have a
database server ready, you can get access to a Query Editor where you can type all your SQL queries.

Now, let's get started with our cheat sheet and learn some SQL basics and SQL syntax to get the ball rolling.

Working with Tables

To work with SQL, you need to understand that data is organized into tables. One database would contain all the data for a single application (in most cases). A single database would
have multiple tables that store values.

Working with Tables

product
Customer

id

Customer id
product_name i
Product_id
CUrrent_prize pl‘Ddl.,Il:t
total_prize -
description I LRI
T city_id delivery address
if available city id i
¥ payment_method id delivery product
delivery addres: ; i
CNVETY. BOOress confirmation_code expected_time_delivery

email .
current_delivery status

phone

cenfirmation_code

For example:- If you have a restaurant management application or implemented E-Delivery solution for smooth operations, you would have a database that contains tables such as:

1. Customers
2. Orders

3. Menu Items
4. Receipts

5. Combox

etc. Each table would contain a specific type of data and various tables could have different types of relations. Using SQL relations, we can combine values from different tables to fetch
the data that we require. (More on relations in a later section)

To create a table, we would require two things. Firstly, we would need all the fields that we want to store in a table. Secondly, we want to define the type of data that would enter into a
table.

Let's take the restaurant management application's Customers table as an example. We want to store some information about each of our customers such as their name, Phone Number,
and Postal Code. Now that we are done with the first step, we need to define the data types of these values.

The name of a customer would be of character data type because we need to store alphabetical characters. Similarly, the phone number would be characters again because we would need
to store country code, and special characters such as '+, '()', etc. The postal code would be of type integer because we need to store numbers. Here is how the table would look like:

Name Phone Postal Code
varchar(50) varchar(15) integer

To identify each customer uniquely, we add an ID to them so that we can use this ID to connect data from various tables. So, the final table structure could look something like this.

ID Name Phone Postal Code
INTEGER VARCHAR(50) VARCHAR(15) INTEGER

To create this table, we would use the CREATE SQL Command followed by the fields as follows:
CREATE TABLE customers(

ID INT NOT NULL,

name varchar(50),

phone varchar(15),

postalCode INT

);

To delete this table, we would use the DROP command as follows:

DROP TABLE customers;

SQL Data Types for Server

To create tables for manipulating data effectively, we need to work with the correct data type. Let's say we want to work with dates, it would be easier to create a column for holding
DATE type values instead of storing them as a string and writing logic to manipulate the values.

SQL Data Types

—— e ———

® ® [®
Char, Varchar, hit, smallint, int, Datetime, Date, Binary, Varbinary, Clob, Blob, |]SON,
Nchar, Narchar, bigint, decimal, Time, Timestamp, Varbinary(max) XML
Text, Ntext real, numeric, float Year image

Every RDBMS is different and each RDBMS might have a different data type for working with certain values. The following sections of this SQL Cheat Sheet contain the various types
of MySQL data types.

String Data Types
Data Type Description
CHAR(size) A fixed-length string that can contain numbers, letters, and special characters. The string length is from 0 - 255
VARCHAR(size) Variable-length string similar to CHAR(), but with a length from 0 to 65535.
TEXT(size) Holds a string of a maximum of 65,536 bytes.
TINY TEXT Holds a string of a maximum of 255 characters.

MEDIUM TEXT Holds a string with a maximum length of 16,777,215 characters.
LONG TEXT Holds a string with a maximum length of 4,294,967,295 characters.
BINARY (size) Similar to CHAR() but stores binary byte strings.

VARBINARY (size) Similar to VARCHAR() but for binary byte strings.
BLOB(size) For holding blobs of up to 65,536 bytes.
TINYBLOB Used for BLOBs (Binary Large Objects). Has a max length of 255 bytes.

MEDIUMBLOB Holds blobs of up to 16,777,215 bytes.

LONGBLOB Holds blobs of size up to 4,294,967,295 bytes.

A string object that can have only one value is chosen from a list of possible values of up to 65535 values in an ENUM list. If the value inserted is
not in the list, a blank value will be inserted.

SET(val1,val2,...) A string object that can have 0 or more values, chosen from a list of possible values. You can list up to 64 values in a SET list.

ENUM(val1,val2,...)

Numeric Data Types

Data Type Description

BIT(size) A bit-value type. The size parameter can hold a value from 1 to 64. The default value for size is 1.
INT(size) A medium integer with a signed range of -2147483648 to 2147483647, and an unsigned range from 0 to 4294967295.
TINYINT(size) A very small integer. The signed range is from -128 to 127. The unsigned range is from 0 to 255.
SMALLINT(size) A small integer. The signed range is from -32768 to 32767. The unsigned range is from 0 to 65535.
MEDIUMINT (size) A medium integer. The signed range is from -8388608 to 8388607. The unsigned range is from 0 to 16777215.
BIGINT(size) A large integer. The signed range is from -9223372036854775808 to 9223372036854775807. The unsigned range is from 0 to
18446744073709551615.
BOOL/BOOLEAN Zero values are considered as FALSE and non-zero values are considered as TRUE.

A floating-point value. If the precision parameter(p) is between 0 to 24, the data type is set to FLOAT(), and if it's from 25 to 53, the data type is set to

FLOAT(p) DOUBLE(). This makes the storage of values more efficient.
A floating-point number value where the total digits are set by the size parameter,
DOUBLE(size,d) and the number of digits after the decimal point is set by the d parameter.
DEC(size,d)/ An exact fixed-point number with the total number of digits set by the size parameters, and the total number of digits after the decimal point set by
DECIMAL(size,d) the d parameter. For size, the maximum number is 65 and the default is 10, while for d, the maximum number is 30 and the default being 10.

Note: All the numeric data types may have an extra option: UNSIGNED or ZEROFILL. If you add the UNSIGNED/ZEROFILL option, MySQL disallows negative values for the
column.

Date/Time Data Types
Data Type Description
DATE A simple date in YYYY-MM-DD format, supporting a range from ‘1000-01-01’ to ‘9999-12-31".
TIME(fsp) A time in hh:mm:ss format, with a supported range from ‘-838:59:59’ to ‘838:59:59’

DATETIME(fsp) A date and time combination in YYYY-MM-DD hh:mm:ss format. The supported range is from '1000-01-01 00:00:00' to '9999-12-31 23:59:59'

TIMESTAMP(fsp) A Unix Timestamp, which is a value relative to the number of seconds since the Unix epoch (“1970-01-01 00:00:00’ UTC). This has a supported
P range from “1970-01-01 00:00:01° UTC to ‘2038-01-09 03:14:07’ UTC.

YEAR A year in four-digit format with the range as - 1901 to 2155

CRUD Operations with SQL

Now that we have our table(s) ready, let's see how we can store and retrieve data from the tables in our database. In the following sections of this SQL Basics Cheat Sheet, we would look
at the most basic SQL operations.

Crud Operation
with

Create Read Update Delete

C R U D

CRUD is an acronym that stands for Create, Read, Update, and Delete. These are the most fundamental operations that one can perform on any database. For creating any application,
these 4 types of operations are crucial. They are:-

1. INSERT (Create)
2. SELECT (Read)
3. UPDATE (Update)
4. DELETE (Delete)

INSERT
To insert data into any table, we use the INSERT INTO statement. The general syntax for insert is:
INSERT INTO table name(columnl,column2,...)
VALUES(vall,val2,...);
To insert data into our customer's table, we would use the following statement:
INSERT INTO customers(ID,name,phone,postalCode)

VALUES(1,'Alice','+123456789',123456);

SELECT

To read data from a table, we would use the Select statement where we define the columns that we want to fetch. The general syntax is:

SELECT columnl,column2,.. FROM table name;

If we wanted to select the name and phone number of a customer from our table, we would use:
SELECT name, phone FROM customers;
Also, to read all the columns from our table, we can replace the column names with * as follows:

SELECT * FROM customers;

UPDATE

To update specific column(s) of specific row(s), we make use of the Update statement. The general syntax for an update statement is:
UPDATE table_name
SET columnl=valuel,column2=value2,...
WHERE conditions...;
For example, if we wanted to update the phone number of a customer that has an ID of 2, we would write our query as:
UPDATE customers
SET phone='+2223334445'
WHEREID=2;

We can update multiple columns by adding them to the SET statement and we can target multiple rows by adding them to the WHERE statement. We will look at WHERE in detail in
later sections of this SQL commands cheat sheet.

DELETE

If we wanted to remove some rows from a table, we would use the delete statement. The general syntax is:
DELETE FROM table name
WHERE condition...;
Let's say we want to remove all the customers who live in a particular area. So, we simply delete those rows that have a specific area code:
DELETE FROM customers

WHERE postalCode=223344;

List of useful SQL Keywords

In the following section of this SQL Server Cheat Sheet, we will have a look at all the commands/keywords that we can use in SQL to work with data, tables, and databases.

SQL

Language

Structured Query Language

Keyword Description
ADD Add a new column to an existing table. Eg: ALTER TABLE customers ADD email_address VARCHAR(255);
ALTER TABLE Adds, deletes, or edits columns/constraints in a table. Eg: ALTER TABLE customers DROP COLUMN email_address;
ALTER COLUMN Changes the data type of a table’s column. Eg: ALTER TABLE customers ALTER COLUMN phone varchar(50)
AS Renames a table or column with an alias value that only exists for the duration of the query. Eg: SELECT name AS customer_name, phone,
postalCode FROM customers;
ASC Used with ORDER BY to return the data in ascending order.
Adds a constraint that limits the value which can be added to a column. Eg: CREATE TABLE Users(firstName varchar(255),age INT,
CHECK)
CHECK(age>10));
CREATE : ..
DATABASE Creates a new database. Eg: CREATE DATABASE my website;

CREATE TABLE Creates a new table. Eg: CREATE TABLE users (id int,firsr_name varchar(255), surname varchar(255), address varchar(255), contact_number int);
Set the default value for a column. Eg: CREATE TABLE products(ID int, name varchar(255) DEFAULT 'Username’, from date DEFAULT

DEFAULT GETDATE());
DELETE Delete values from a table. DELETE FROM users WHERE user_id= 674;
DESC Used with ORDER BY to return the data in descending order.
DROP COLUMN Deletes a column from a table. ALTER TABLE users DROP COLUMN first_name;

Mandar Patil

DROP

Deletes a complete database along with all the tables and data inside. Eg: DROP DATABASE my website;

DATABASE
DROP DEFAULT Removes a default value for a column. Eg: ALTER TABLE products ALTER COLUMN name DROP DEFAULT;
DROP TABLE Delete a table from a database. Eg: DROP TABLE customers;
FROM Specifies which table to select or delete data from. Eg: SELECT * FROM customers;
IN Used with a WHERE clause as a shorthand for multiple OR conditions. Eg: SELECT * FROM users WHERE country IN(USA', 'United
Kingdom','Russia');
IS NULL Tests for empty (NULL) values. Eg: SELECT * FROM users WHERE phone IS NULL,;
IS NOT NULL Opposite of IS NULL. Tests for values that are not null.
LIKE Returns true if the operand value matches a pattern. SELECT * FROM users WHERE first_name LIKE '%son’;
ORDER BY Used to sort the resultant data in ascending (default) or descending order.
§|§|‘_|'I|E[\?(-;FT Same as SELECT, except duplicate values are excluded. Eg: SELECT DISTINCT postalCode from customers;
TOP Used alongside SELECT to return a set number of records from a table. Eg: SELECT TOP 5 * FROM customers;
VALUES Used alongside the INSERT INTO keyword to add new values to a table. Eg: INSERT INTO cars (name, model, year) VALUES ('Ford', 'Fiesta',
2010);
WHERE Filters result only includes data that meets the given condition. SELECT * FROM orders WHERE quantity > 1;

Operators in SQL

SQL has various operators that allow you to manipulate and compare multiple values. These are very useful and handy while creating queries.

FREE

SQL Arithmetic Operators

Operator Description

+ Addition

- Subtraction
* Multiply

/ Divide

% Modulo

SQL Bitwise Operators

Operator Description

& Bitwise AND
| Bitwise OR
A Bitwise Exclusive OR

SQL Comparison Operators

Operator in

Operator Description

= Equal to

> Greater Than

< Less Than

>= Greater than or equal to
<= Less than or equal to
<> Not Equal to

SQL Compound Operators

Operator Description

+= Add Equals

-= Subtract Equals

*= Multiply Equals

/= Divide Equals

%= Modulo Equals

&= Bitwise AND Equals
A= Bitwise Exclusive Equals
|*= Bitwise OR Equals

Compound
Operators

Comparison
Operators

Arithmetic
Operators

Logical
Operators

Bitwise
Operators

Mandar Patil

SQL Logical Operators

Operator Description
ALL TRUE if all of the subquery values meet the condition
AND TRUE if all the conditions separated by AND is TRUE
ANY TRUE if any of the subquery values meet the condition
BETWEEN TRUE if the operand is within the range of comparisons

EXISTS TRUE if the subquery returns one or more records
IN TRUE if the operand is equal to one of a list of expressions
LIKE TRUE if the operand matches a pattern
NOT Displays a record if the condition(s) is NOT TRUE

OR TRUE if any of the conditions separated by OR is TRUE
SOME TRUE if any of the subquery values meet the condition

SQL Keys

In a database, different tables store different values and these values are related to each other. To identify each row uniquely, we make use of SQL keys. An SQL key is either a single
column (or attribute) or a group of columns that can uniquely identify rows in a table. SQL Keys ensures that there aren't any rows with duplicate values.

SEEEEmEEm

CE e T

However, the most powerful use of keys is to establish relations between multiple tables in a database. To do so, we need to understand Primary Key and Foreign Key. The following
sections of this SQL cheatsheet explain both of these concepts.

Primary Key

It is a key that uniquely identifies a single row in a table. For example, in a customer's table, the ID key can be used as a primary key to uniquely identify a single customer. This key can
then be used to fetch data from multiple tables that have data related to the customer.

Key Points:

1. There can only be One Primary Key for a Table.
2. Primary Key should be unique for Each Row.
3. Primary key cannot have Null Values.

Typically, the primary key in a table is the ID column and is usually paired with the AUTO_INCREMENT keyword to uniquely identify the row. To mark a column as the primary key,
we use the PRIMARY KEY keyword followed by the column/columns that consist of the primary key. For Example: -

CREATE TABLE users (
id int NOT NULL AUTO_INCREMENT,
first_name varchar(255) NOT NULL,
last_name varchar(255) NOT NULL,
address varchar(255),
email varchar(255) NOT NULL,
PRIMARY KEY (id)

)s

Foreign Key

A foreign key is a field in a table that references the PRIMARY KEY of another table. A foreign key is used to link two tables together by establishing a relationship.
The table that contains the foreign key is known as the child table, while the table containing the primary key for the foreign key is known as the parent table.

For example: Let's say we have 3 different tables to manage a restaurant - products, users, and orders. In our products table, we list all our products and in the user's table, we have
details of all our users. When a user places an order, we save the data in the orders table. But, instead of saving the complete details of the product and all the information of the user, we
save their primary keys in the orders table.

CREATE TABLE orders(
order_id INT NOT NULL,
user_id INT,
product_id int,
PRIMARY KEY(order_id),
FOREIGN KEY(user_id) REFERENCES users(id),
FOREIGN KEY(product_id) REFERENCES products(id)

)s

Here, we create a primary key for the order ID as it uniquely identifies an order. Also, we create two foreign keys that reference different primary keys.

SQL Joins

Once you understand Primary Key and Foreign Key, you can use joins to fetch data by combining multiple tables. Let's take the orders, customers, and products table as an example.

INNER JOIN LEFT JOIN

RIGHT JOIN OUTER JOIN

Products:

product_id product_name price

1 Burger 10
2 Sandwich 15
Customers:
customer_id customer_name email
1 Alice alice@alice.com
2 Bob bob@bob.com
Orders:

order_id customer _id product _id

1 1 1
2 1 2
3 2 1

We can join the orders table with customers and products table to get only the information that we require. Let's say we want to see all the orders with the customer's name, product
name, and product price as follows:

order_id product_name customer_name price

1 Burger Alice 10
2 Sandwich Alice 15
3 Burger Bob 10

To do so, we would use join in SQL as follows:

SELECT orders.order_id, products.product_name,customers.customer_name,products.price
FROM orders

INNER JOIN products ON products.product_id = order.product_id

INNER JOIN customers on customers.customer_id = order.customer_id;

1. INNER JOIN - Returns any records which have matching values in both tables.

2. LEFT JOIN - Returns all of the records from the first table, along with any matching records from the second table
3. RIGHT JOIN - Returns all of the records from the second table, along with any matching records from the first

4. FULL JOIN - Returns all records from both tables when there is a match

SQL Cheatsheet for SELECT Queries

1. Retrieve specific columns

SELECT userld,name,age,phone,country FROM Users;
2. Retrieve all Columns

SELECT * FROM Users;

3. Retrieve Filtered Rows

SELECT * FROM Users WHERE age>18;

4. Retrieve Distinct Rows

SELECT DISTINCT country from Users;

Mandar Patil

5. Count the Filtered Rows

SELECT COUNT(*) FROM users WHERE age>18;

6. Sort Rows Based on Criteria

SELECT * FROM Users ORDER BY userld ASC/DESC;

Note: You can use ASC for Ascending Order or DESC for descending order. If nothing is specified, sorting is done in Ascending order(ASC).

7. Retrieve Limited Rows
SELECT * FROM Users WHERE country="india’ LIMIT 20;

8. Retrieve and Skip/Offset Rows

SELECT * FROM Users ORDER BY userld OFFSET 10 ROWS;

9. Get Average, Sum, Max, Min, etc. of Results

SELECT AVG(age) FROM USERS;

10. Get all Values from two Tables

SELECT * FROM Users INNER JOIN Wallets ON Users.walletld = Wallets.walletld;

Note:- We can use any type of join that we want. The condition via which we want to join the tables needs to be specified after the ON keyword.

11. Get selected values from two tables

SELECT us.userId,us.name,wall.walletId,wall.balance
FROM Users AS us
INNER JOIN Wallets AS wall

Note: - We use the AS keyword to give an alias to a table to make our SELECT statement shorter. We can even eliminate the AS keyword in this case and simply write the Alias after the
table name.

SQL Cheatsheet for INSERT Queries

1. Insert All Values in Order a Table

INSERT INTO Users VALUES(‘Kanak Infosystems’,’sales@kanakinfosystems.com’,9876543210);

2. Insert Selected Values in a Table
INSERT INTO Users(userName,email) VALUES(‘Kanak Infosystems’, sales@kanakinfosystems.com’);

3. Insert Multiple Rows

INSERT INTO User(userName) VALUES
(fuserl’),
(‘user2’);

Note: - We separate each row with a pair of brackets followed by a comma.

SQL Cheatsheet for TABLE Queries

1. Create a New Table

CREATE TABLE Users(
id INT PRIMARY KEY,
userName VARCHAR(50),
age INT DEFAULT 10

)5
2. Delete a Table

DROP TABLE Users;

3. Remove all Values from a Table

TRUNCATE TABLE Users;

4. Add a Column to the Table

ALTER TABLE Users ADD COLUMN country VARCHAR(20);
5. Remove a Column from a Table

ALTER TABLE Users DROP COLUMN country;

6. Rename a Table

ALTER TABLE Users RENAME TO Customers;

7. Rename a Column

ALTER TABLE Users RENAME userName to name;

SQL Cheat Sheet for UPDATE/DELETE Queries

1. Update Column Value for all Rows
UPDATE Users SET country="india’;
2. Update Column Value for Selected Rows

UPDATE Users SET isEligible="true’ WHERE age>=18;

3. Delete all Rows
DELETE FROM Users;
4. Delete Specific Rows

DELETE FROM Users WHERE age<18;

SQL Cheat Sheet for SELECT Filters

1. Filter by Multiple Matching Conditions

SELECT * FROM Users WHERE age>=18 AND country="india’;

2. Filter Rows by Multiple Parallel Conditions

SELECT * FROM Users WHERE country="india’ OR name LIKE ‘Kan%’;
3. Filter Rows Based on Values in a List

SELECT * FROM Users WHERE age IN (15,18,22,27);

4. Filter Rows with Values in a Range

SELECT * FROM Users WHERE age BETWEEN 25 AND 30

Conclusion

SQL is a definite requirement when you are trying to build an application of any size and scale. Learning SQL might be tough for beginners, but once you get the hang of it, it's just like
thinking.

Make sure to bookmark this page and download the SQL cheat sheet pdf if you are working with SQL. If you can remember a particular operation or keyword, you can open up this SQL
commands cheat sheet to get all the required information.

